Tools

西门子中国西门子中国

Site ExplorerSite Explorer
Close site explorer

S7-200驱动步进电机心得

摘要:S7-200CPU本身带有高速脉冲输出功能,特另是224XP(CN)的高速输出频率达到100kHz,十分适合作为步进电机的驱动脉冲,配以细分型的驱动器,在某些应用场合,效果逼近伺服电机,取得性能和经济性的最佳平衡。
  关键词:高速脉冲 PTO 步进电机 细分驱动器
 
Abstract   This paper introduces that  S7-200 CPU directly drive stepping motor using high speed output Intrinsic function.  In some situation, it will get better balance functionality and economic when S7-200 work with divided driving stepper motors.
Key Words:  High Speed Pulse, PTO, Stepping Moto

正文:
1           项目简介
某公司有多台薄膜卷绕机需要进行自动化控制改造。
原设备采用机械式计数,卷绕动力采用离合器传动,元件卷绕的起动、停止、圈数控制等均由人工操作控制,因此存在产品参数离散性大、产品质量与生产效率因人而异等不足之处。
工艺要求简述:由于卷制材料是10几微米的薄膜,要求卷轴平稳起动,均匀加速,以使用张力平稳;中间在某些位置需要停顿,作一些必要的处理,再继续卷绕;和起动一样,停顿或停止时,必须均匀减速,保持张力平稳;要求最后圈数准确。
  2           控制系统构成
很自然地想到S7-200PLC应该能够实现项目要求的控制功能。
S7-200CPU本体已含有高速脉冲输出功能,普通型号的CPU脉冲输出频率达20KHz,而224XP(CN)更是高达100kHz,可以用来驱动步进电机或伺服电机,再由电机直接驱动卷绕主轴旋转,完成工艺所要求的动作。
步进电机在成本上具有优势,但是步进电机的运转平稳性不如伺服电机,而两者的定位精度(圈数)的控制,在本工艺里都可以达到要求。我们考虑先试用步进电机的方案。
步进电机的驱动,实际上是由相应的步进电机驱动器负责的,所以步进电机的相数齿数等等问题由相应的驱动器解决,选择步进电机要考虑的主要是体积、转矩、转速等,不是本文的重点;
PLC向驱动器送的仅为代表速度与位置的脉冲,这里要考虑的是步进电机在规定的转速下是否足够平稳,是否适合作为薄膜卷绕的动力。
我们作了一个模型机进行试验,采用细分型的驱动器,在50齿的电机上达到10000步/转,经17:25齿的同步带减速传动(同时电机的振动也可衰减),结果运转很平稳,粗步确定可以达到工艺要求。于是正式试制一台,也获得成功,性能达到工艺要求,目前已经按此方案批量进行改造。
CPU选择224XPCN DC/DC/DC,系统构成如下:
224XP*1、步进电机*2、细分型驱动器*2、TD200*1、LED显示屏*1、编码器*1。
2.1         PTO0(Q0.0)输出一路高速脉冲,负责驱动卷绕主轴的旋转;
2.2         PTO1(Q0.1)输出一路高速脉冲,负责驱动主轴的水平直线移动;
2.3         一个正交增量型编码器装在主轴上,作为卷绕圈数的反馈;
2.4         TD200作为人机界面,用于设定参数
2.5         一个LED显示屏用于显示实时的卷绕圈数。在实际生产中,工人需要时时参考卷绕的进度,LED显示比LCD醒目,所以这里放置了一个自制的LED显示屏。LED屏和PLC的连接方式,可参考本人在2003年的专家论文集中的文章。
  3           控制系统完成的功能
3.1         控制系统首先要实现的功能,是卷绕的平稳起动、加速、减速、平稳停止。在新版的S7-200中,支持高速输出口PTO0/PTO1的线性加/减速,通过MicroWin的向导程序,非常容易实现。实际上,以目前的情况,线性加减速只能使用向导生成的程序,Siemens没有公开独立可使用的指令。
3.2         使用位置控制向导生成以下四个子程序(仅限CPU内的PTO,不包括专用模块的情况),以PTO0为例:
3.2.1          PTO0_CTRL:每周期调用一次,可以控制PTO0的行为;
3.2.2          PTO0_MAN:可以控制PTO0以某一频率输出脉冲,并且可以通过程序随时中止(减速或立即中止);
3.2.3          PTO0_RUN:运行(在向导中生的)包络,以预定的速度输出确定个数的脉冲,也可以通过程序随时时中止(减速或立即中止)。
3.2.4          PTO0_LDPOS:装载位置用,本例使用相对位置,所以不必装载。
本例的工艺要求,输出脉冲数可变(圈数可设定),又要在工艺允许的情况下尽可能地按指定的速度运行,也要随时能够减速停止,包括人工手动的停车要求。直接使用PTO0_MAN和PTO0_RUN都无法直接满足要求,以下来研究配合辅助手段如何实现。
3.3         精确的位置(圈数)控制
3.3.1      PTO0_RUN + 中断
卷绕定位与圈数控制,达到0.1圈以内的精度即可,以10000步/转的细分驱动器,0.1圈相当于1000脉冲。
假使PTO正以最高100kHz速度输出脉冲,以1ms的时间响应中断,脉冲的误差约为100个,所以从理论上说,中断方式把脉冲误差控制在1000个以下完全可以。
如何实现?我们来看下面一个PTO0_MAN指令执行的示意图:


                                                 有恒速阶段


                                                无恒速阶段

当PTO0_MAN指令RUN=1允许脉冲输出时,脉冲序列从最低速(起始速度,本例设为100p/s,很小,可以认为0)线性加速,加到指定速度speed后保持匀速,当收到减速停止RUN=0命令时,线性减速,至最低速后停止。
所以,我们只要在脉冲输出前计算出停止指令执行的位置,并在此位置设置中断以便执行减速停止指令,就可保证输出的序列脉冲个数在要求的误差范围内。
计算过程:
本例加速和减速的斜率是相同的,比较简单,如果两个斜率不同,计算稍麻烦一点,原理差不多。
3.3.1.1     用向导生成一个最高速单速包络,从生成的PTO0_DATA中找出加速和减速脉冲数(可以参考3.3.2节的描述),如果加减速斜率相同,这两个数应该是一样的,由于计算精度的关系,差几个脉冲也属正常。这个数据在程序中可以作为常数使用。
3.3.1.2     如果目标脉冲数大于加速和减速脉冲数之和,表示脉冲输出可以加速到最高速,有恒速阶段,那么中断位置=目标脉冲数-减速脉冲数;
3.3.1.3     如果目标脉冲数不大于加速和减速脉冲数之和,无恒速阶段,包络变成一个等腰三角形(两边斜率相同的情况),那么中断位置=目标脉冲数/2。
3.3.1.4     更进一步,水平恒速的速度可变,就象本案的情况,卷绕速度是可设定的,而且这个速度受机械/电机最高限速、薄膜最高线速的限制,取三者中的最小值,然后才能确定加速到该速度所需的脉冲数,通过简单的数学计算即可获得。
3.3.2      PTO0_RUN + 修改包络参数
用向导生成一个单一速度包络,我们来研究自动生成的包络数据结构:
PTO0_DATA
//----------------------------------------------------------------
//输出 Q0.0 的 PTO 包络表
//----------------------------------------------------------------
VB1000 'PTOA'                      //
VW1004 54                          //FREQ
VD1006 10240000                    //SS_SPEED
VD1010 204800000                   //MAX_SPEED
VD1014 16#02000E69                 //K_ACC
VD1018 16#82FFF197                 //K_DEC
VB1022 1                           //NUMPROF
VW1023 25                          //OFFS_0
VB1025 4                           //包络 0 的 NUM_SEGS
VB1026 0                           //保留。
VB1027 0                           //段 0 的 S_STEP
VB1028 16#08                       //S_PROP
VD1029 +10240000                   //SFREQ
VD1033 49950                       //加速的脉冲数
VB1037 0                           //段 1 的 S_STEP
VB1038 16#04                       //S_PROP
VD1039 +199707040                  //SFREQ
VD1043 98                          //恒速的脉冲数
VB1047 0                           //段 2 的 S_STEP
VB1048 16#00                       //S_PROP
VD1049 -1                          //SFREQ
VD1053 49951                       //减速的脉冲数
VB1057 0                           //段 3 的 S_STEP
VB1058 16#10                       //S_PROP
VD1059 +10240000                   //SFREQ
VD1063 1                           //最终减速的脉冲数
VB1067 0                           //保留。
VB1068 0                           //保留。
VB1069 0                           //保留。
可以看出,一个最简单的包络分为4段(VB1025):
段0:加速段,加速脉冲数在VD1033
段1:恒速段,恒速脉冲数在VD1043
段2:减速段,减速脉冲数在VD1063
段3:最终减速脉冲数,VD1063。依我的经验看,这个最终减速脉冲数始终为1。
在向导中,只能生成有限的包络,如果目标脉冲数任意的,我们只好修改包络里面的数据了。加速段和减速段的脉冲数不方便改,因为线性加减速的指令并不清楚,所以只好修改恒速段的脉冲数。实践证明,修改恒速段的脉冲数,可以非常容易且准确地控制输出脉冲数。唯一的限制是,总的脉冲数,必须大于加减速段+最终减速段脉冲数之和,也即恒速段的脉冲不能小于1。
使用步骤:
3.3.2.1     在启动PTO0_RUN之前,计算出恒速段的脉冲数=目标脉数数-加减速脉冲数之和-1,填入包络表中的恒速位置;
3.3.2.2     启动PTO0_RUN。
  3.4         在本项目的设备改造中,主轴卷绕的圈数、中间起停点的变化范围大,使用“PTO0_RUN + 中断”,安排在Q0.0输出;
中断是由高速计数器触发的,所以在Q0.0的向导中使能HC0为作脉冲输出内部反馈,在启动PTO0前使能12#中断“HSC0 CV=PV”,中断程序样例如下:
LD     SM0.0
R      M20.4, 1
CALL   PTO0_MAN, M20.4, PTO0_V, VB290, VD292
DTCH   12
主轴的水平直线运动,行程比较固定,调节范围小,使用“PTO1_RUN + 修改包络参数”,安排在Q0.1。
  4           项目运行
首台设备改造完成于2005年12月,至目前已有6台投入运行,效果达到预期的目标,保证了产品质量的一致性,生产效率也有提高,工人劳动强度明显降低。


                                                        控制箱实物 控制箱实物

5           体会
S7-200是一款是非常优秀的微型控制器,许多功能进行深入研究之后可以做到灵活应用,拓宽其在小型控制领域的应用范围,同时保持较低的应用成本。
S7-200非常象一台带控制IO功能的超级微型计算机,使用STL编程,完全不受继电器逻辑那一套框框的约束,可以象一种计算机语言一样自由地编程。